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Abstract: We propose a high speed all-optic dual-modal system that combines spectral domain 
optical coherence tomography (SDOCT) and photoacoustic imaging (PAI) to evaluate 
microvasculature flow states. A homodyne interferometer was used to remotely detect the 
surface vibration caused by photoacoustic (PA) waves. The PA excitation, PA probing and 
SDOCT probing beams share the same X-Y galvanometer scanner to perform fast 
two-dimensional scanning. In addition, we introduced multi-excitation, dual-channel 
acquisition and sensitivity compensation to improve the imaging speed of the PAI sub-system. 
The total time for imaging a sample with 256 × 256 pixels is less than 1 minute. The 
performance of the proposed system was verified by in vivo imaging of the vascular system in a 
mouse pinna with normal and then blocked blood circulations. The experimental results 
indicate that the proposed system is capable of revealing different blood flow states (static and 
moving) and is useful for the study of diseases related to functional blood supply. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Mammalian cells require oxygen and nutrients to survive, and therefore locate within 100 to 
200μm distance from the blood vessels — the diffusion limit for oxygen [1]. The vascular 
system regulates blood flow and tissue perfusion which is essential for organ function [2]. 
Many diseases originate or associate with vascular system disorders [1,3–5]. Visualization of 
blood vessel distribution and differentiation of the flow state in vessels are important for the 
diagnosis and pathogenesis analysis of vascular diseases [6–9]. 

Many technologies have been developed to image blood vessels, namely angiography. 
Magnetic resonance imaging (MRI), computed tomography (CT), positron emission 
tomography (PET), ultrasonography and digital subtract angiography (DSA) have proven to be 
effective in visualizing large vessels. However, these methods are unlikely to be efficacious for 
observing small vessels because of their comparatively lower resolution [8–10]. Fluorescence 
microscopy and multiphoton microscopy have sufficient spatial resolutions for imaging 
capillaries, but they are invasive imaging modalities requiring agent injection into samples. 
Optical coherence tomography (OCT) provides depth-resolved images in turbid media with 
high spatial and temporal resolutions [11]. OCT angiography (OCTA) was first proposed in 
2007 as a functional extension to OCT technique [12]. OCTA can provide non-invasive, 
non-contact, three-dimensional blood flow perfusion images based on backscattering 
properties from moving particles such as red blood cells. It has been successfully employed to 
obtain detailed micro-capillary networks in different biological tissues in vivo, such as the 
retina, skin, brain and skeletal muscle [7,8,13,14]. Photoacoustic imaging (PAI) is also a 
non-invasive imaging modality feasible for structural, functional, and molecular imaging [15]. 
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PAI detects ultrasonic signals produced by light absorption in a sample. Due to the high light 
absorption characteristic of hemoglobin, PAI is sensitive to all blood vessels regardless of 
flowing states inside. Both OCTA and PAI are powerful tools for angiography, and their 
combination can provide more useful information of blood flow for the vascular diseases, such 
as stroke. 

In recent years, some multi-modal imaging systems combining PAI and OCT have been 
reported [16–21]. The integration of the two modalities is limited by the discrepancy of their 
detection components. The transducer used in PAI obstructs OCT scanning [22]. Optical 
interferometric methods, such as Mach–Zehnder interferometer [23–25] and Fabry–Perot 
interferometer [26–28], have been proposed as the alternatives to transducers. These techniques 
also have difficulties for the combination with OCT, because bulky and complicated optics are 
involved in general [29]. Fiber based Michelson interferometers have been reported for 
photoacoustic (PA) signal detection, including low-coherence and long-coherence 
interferometers [30,31]. Park et al. proposed an all-fiber heterodyne interferometer for 
non-contact PA tomography (PAT) [32]. Using this technique, Eom et al. established an 
all-fiber-optic PAT and OCT multi-modal system. In order to achieve heterodyne detection, 
acousto-optic modulation is required and the reported system is complex. The homodyne 
interferometer is relatively simple and easy to be implemented [31,33]. However, the 
sensitivity of the system varies due to ambient disturbance. Data acquisition is recommended to 
be performed when the system reaches its maximum sensitivity. This operation is time 
consuming and reduces the imaging speed of the multi-modal system. 

In this paper, we present a high speed, all-optic dual-modal system that integrates OCT and 
PAI. To improve the imaging speed of PAI, a novel acquisition strategy was adopted, including 
multi-excitation, reference arm modulation, and 2-channel acquisition. It is unnecessary to lock 
the system at its maximum sensitivity. PA signals were compensated according to the 
instantaneous systematic sensitivity. To test the capability of the system for assessing blood 
flow state, the vasculatures of a mouse pinna was imaged in vivo with and without flowing 
blood. 

2. System and method 

2.1 OCT and PAI dual-modal system 

The dual-modal setup used in this study integrated a spectral domain OCT (SDOCT) subsystem 
and a PAI subsystem with optical detection as illustrated in Fig. 1. In the SDOCT subsystem, 
we use a broadband infrared superluminescent diode (SLD, D-840-HP, Superlum) with a 
central wavelength of 840 nm and a full width at half maximum (FWHM) bandwidth of 80 nm 
as the illumination source to provide an axial resolution of ~6 μm in air (red beam in Fig. 1). 
The ex-fiber output power was rated at ~15 mW. Light from SLD went through an optical 
circulator and was split into a probing arm and reference arm through a 2 × 2 fiber coupler with 
10:90 split ratio. The ninety percent power path went to the probing arm while the ten percent 
power path went to the reference mirror. The lights reflected back from both reference and 
probing arms met and interfered with each other at the fiber coupler, and the resulting 
interferogram was sent via the optical circulator to a custom-built high-speed spectrometer. The 
spectrometer consists of a transmission grating (1800 lines/mm), a camera lens with a focal 
length of 100 mm, and a line-scan camera (spL2048-140km, Basler). The theoretical depth 
range was calculated to be ~2.4 mm in air. The line-scan camera was running at 50,000 Hz to 
convert interferograms to digital signals. With each B-scan frame (i.e. X direction) containing 
256 A-lines, the imaging speed of the OCT can reach 160 frames per second. The space 
between adjacent A-lines is ~5 μm and each B-scan spans is ~1.3 mm. The C-scan consists of 
256 cross-sections with ~5 μm space interval covering ~1.3 mm. The acquired interferogram 
data were transmitted to a workstation through an image grabber (PCIe-1433, NI). 
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2.2 OCT angiography 

The detailed description of OCTA has been described previously [34,35]. In SDOCT, the 
interferogram is captured by the line-scan camera. For simplicity, we ignore all components 
that do not contribute to the useful information about microstructure and flow. The 
interferogram can be expressed as: 

 ( ) ( ), 2 ( ,  ) cos[2 (   )] ,RI t k S k E a z t kn z vt dz
∞

∞−
= −  (1) 

where k is the wavenumber; t is the time at which the interferogram is captured; ER is the 
amplitude of the light reflected from the reference mirror; S(k) is the spectral density of the light 
source; z is the depth; a(z, t) is the amplitude of the light backscattered from the sample; n is the 
refractive index; v is the axial velocity of blood cells. According to previous analysis [36,37], 
the sensitivity to the flow velocity detection is determined by the time interval between 
adjacent interferograms used for velocity calculation. The sensitivity increases with the time 
interval elongating. Here, high-pass filtering was applied along the slow scanning C-scan 
direction to isolate the scattering signal from moving blood cells from the static tissue. Since 
two B-scans were acquired in each cross-section along the C-scan direction with ΔtB time 
interval, a differential operation was applied to the subsequent B-scan at each cross-section. 
This can be described by the following equation: 

 ( ) ( ), , ( , ),   1, 2, 3...256,j B jI t k I t k I t t k+ Δ == −  (2) 

where Ij(t,k) denotes the flow signal at jth cross-section (total of 256 cross-sections) along the 
C-scan direction. As the differential operation is equivalent to high-pass filtering, it suppresses 
optical scattering signals from static elements. Then, by applying fast Fourier transforms (FFT) 
upon every wavenumber k of Ij(t,k), we can obtain a depth-resolved flow image sensitive to 
blood flow for each cross section. With all the cross-sectional flow images, 3D volumetric 
perfusion map can be rendered using visualization software. 

2.3 High speed PAI with multi-excitation and sensitivity compensation 

In our PAI subsystem, the sample was illuminated by a focused short pulse laser. The 
absorption of laser energy by local absorbers inside a sample generated ultrasonic waves via 
thermal-elastic expansion. With plane-wave approximation, the ultrasonic waves leading 
surface vibration are expressed as [38]: 

 ( ) ( )
,

2

C t
p t

t

ε∂=
∂

 (3) 

where p(t) is the pressure of the ultrasonic wave, ε(t) is the surface displacement, and C is the 
acoustic impedance of the medium. Note that the scaling factor half represents the free 
boundary condition at the air–tissue interface. A fiber based homodyne interferometer was used 
to measure the surface displacement. In order to eliminate the DC component of the 
interference signal, balance detection was performed. Therefore, the intensity of the signal can 
be described as [39]: 

 
4

( ) cos[ ( ) ( )],D t A t t
πφ ε
λ

= +  (4) 

where the coefficient A is related to the intensities of the two interfering beams; λ is the 
wavelength of the detection laser; ( )tφ  is the optical phase difference between the probing and 

reference beams related to variations in ambient conditions. ( )tφ  varies slowly (less than a 

few hundred Hz). The surface vibration ( ( )tε ) resulted from PA pressure possess frequency 
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 ( ) ( )
arccos( ),

p

p

D t
t

A
φ =  (7) 

where A is the amplitude of D(t). Hence, surface displacement caused by PA waves can be 
achieved as follows: 

 ( ) ( )
( ) .

4 sin p

DHF t
t

A t

λ
ε

π φ
⋅

=
⋅

 (8) 

The calculated ( )tε  is used to reconstruct PAI images. The advantage is that the varying 

sensitivity is compensated. This provides the potential for improving the scan speed. In Eq. (8), 
when ( )tφ  is close to nπ , the sensitivity is approximately zero (PA2,4,7,8 in Fig. 2). In such a 

case, sensitivity compensation is susceptible to system noise; therefore data acquired within 
those regions need to be exempted from image reconstruction. To avoid such influence, three 
pulses were generated by counter port of AO device (Fig. 1) at each scanning point on the 
sample. The pulses were used to trigger the excitation laser source and data acquisition. The 
output of the balance detector ( ( )D t ) and its high-pass filtered signal ( ( )DHF t ) are 

simultaneously acquired by the 2-channel oscilloscope card. During acquisition, the reference 
mirror was modulated by the PZT. The moving speed of the PZT was controlled in accordance 
with the excitation pulse frequency. This ensures that at least one of the three PA signals is not 
measured at regions where ( )sin tφ  is close to zero (detailed description is shown in section 

3.1). 

3. Experimental results 

3.1 PAI sensitivity compensation 

In order to evaluate the proposed high speed PA imaging method, we imaged a phantom with a 
fine tungsten filament (~100 μm) embedded in scattering gel. Focusing on the same position on 
the tungsten filament, PA signals were excited with three sequential laser pulses (~5 kHz 
frequency). Figure 3(a) shows three BD output waveforms acquired without a reference arm 
modulation. The excitations were completed in ~0.5 ms, and the interference phase ( ( )tφ ) of 

two waveforms changed little during such a short period of time (red and pink lines in Fig. 
3(a)). Therefore, three PA waves may all fall into the low sensitivity region, which will affect 
the accuracy of the sensitivity compensation. This problem can be solved by reference arm 
modulation. During the acquisition, the reference mirror was controlled to shift ~330 nm ( λ / 4
), which introduced a π  phase change. Therefore, at least one PA wave can be free from the 
low sensitivity regions (PA1 and PA3 in Fig. 3(b)). The high-pass filtered signal acquired by the 
other channel is shown in Fig. 3(c). Then, the three PA signals were compensated using the 
proposed methods, where ( ) 81.6 ,9.4 ,and 68.8tφ = ° ° °  respectively (Fig. 3(d)). We can see 

that the amplitudes of PA1 and PA3 are similar. The signal of PA2 was over-compensated 
because it falls into the low sensitivity region and ( )sin tφ  approximates zero. To evaluate the 

effect of the reference arm modulation, the phantom was imaged without and with modulation, 
and the sensitivity compensated images were shown in Fig. 3(e) and 3(f), respectively. We can 
see that the intensity of tungsten filament is not uniform in the image (Fig. 3(e)). This means 
that under-compensation or over-compensation may occur in the low sensitivity region. The 
proposed method utilized reference arm modulation and high sensitivity region signal 
selection, and achieved a better imaging result (Fig. 3(f)). 

Traditionally, PA signals need to be acquired at QPs for a homodyne interferometer based 
vibration measurement. The advantage of this operation is that the maximum sensitivity can be 
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visible by the OCTA technique (Fig. 4(g)), although vasculature was still present in the mouse 
pinna (Fig. 4(h)). The dual-modal system may be applied to stroke research. Ischemic stroke is 
caused by a block of blood supply, for example, a thrombus that occludes the artery. For OCTA 
technique, two acquisitions (before and after occlusion) are required to determine the occluded 
parts of the blood vessels. The proposed system can use a single dual-modal scan to distinguish 
the flow state in blood vessels without having to compare it with previous results. OCTA is a 
motion sensitive technique; therefore it is unable to visualize some capillaries with very small 
flow velocity (blue circle in Fig. 4(c)). However, these vessels can be seen in PAI due to the 
presence of red blood cells and corresponding light absorption (blue circles in Fig. 4(d) and 
4(h)). This result indicates that OCTA and PAI are complementary. Comparing the OCTA and 
PAI images, we can see that the diameters of the blood vessels in OCTA are larger than in PAI, 
especially in big vessels. This may be attribute to that OCTA can extract the entire flow area of 
the blood vessel from the cross-sectional scan images, while PAI only visualize red blood cells 
distributed in the center of the vessel for normal blood flow (axial flow) and sedimentate at the 
bottom when the flow stops. There are some low intensity speckles in our angiography images, 
and their positions correspond in OCTA and PAI (white arrows in Fig. 4(c),4(d),4(h)). The 
cause of speckles is unclear and should be uncovered in future research. 

4. Discussion 

To achieve non-invasive vasculature imaging using endogenous contrast, optical imaging 
could be an option. Scattering and absorption are two categories of light–tissue interaction, 
represented by OCTA and PAI, respectively. Based on the backscattered light from the sample, 
OCTA can extract intrinsic motion signal introduced by flowing blood cells from the 
surrounding static tissue. Thus, OCTA is able to visualize vessels with flowing blood, which 
represents blood flow perfusion (functional blood vessels). Most severe pathologies are 
associated with vascular abnormalities, such as stroke, trauma and cancer. Mapping blood flow 
perfusion is help to the pathogenesis of these diseases. With the progress of these diseases, 
another mechanism is activated and the damaged or blocked blood vessels begin to necrotize 
and are absorbed by surrounding tissue. However, because blood cells in these vessels don’t 
move any more, OCTA cannot catch these vessels and monitor their progress. On the other 
hand, PAI can display all blood vessels with hemoglobin presence. The combination of OCTA 
and PAI is able to distinguish flow conditions in blood vessels, which makes it possible to 
monitor the entire process of disease development. The proposed dual-modal system integrates 
two complementary imaging techniques and can provide both anatomic and functional 
vasculatures. 

In our proposed system, the two detection units are all fiber based interferometers that bear 
the advantages of simplicity, compactness and flexibility. Although the PAI excitation part is 
still in free space, the high power laser was combined with the other two detection beams before 
the X-Y scanner. Therefore, the scanning part of the dual-modal system is compact and easy to 
operate. Two dichroic mirrors were used for combining three light beams, namely the OCT 
probing beam (~840 nm), the PA excitation laser beam (527 nm) and the PA signal detection 
beam (1310 nm). Dichroic mirrors provide high coupling efficiency for beams with different 
wavelength (>90%). However, the dichroic mirror introduces additional dispersion to the 
sampling arm of OCT subsystem and causes dispersion mismatch between the two interference 
arms, which degrades the axial resolution of the OCT. Using the dispersion compensation 
algorithm [42], the resolution reduction was partially compensated. The measured axial 
resolution is ~8 μm in air slightly lower than the theoretical value ~6 μm. Considering that the 
refractive index of the sample is ~1.35, this axial resolution is sufficient for imaging the 
capillary (7~8 μm). 

The PAI subsystem uses fine optical focusing to provide lateral resolution, while the axial 
resolution is still derived from time-resolved ultrasonic detection, which is called optical 
resolution photoacoustic microscopy (OR-PAM) [43]. However, focusing the excitation laser 
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beam restricts the imaging depth to the transport mean-free path (TMFP) [44]. The TMFP is the 
depth at which photon scattering directions become randomized and limits the penetration of 
ballistic optically focused microscopy systems (including OCT and PAM). In soft tissue, the 
TMFPs of the OCT and PAI are calculated as [45,46]: ( )527 0.57= =t PAl nm mmλ  and 

( )840 1.03= =t OCTl nm mmλ , respectively. This means that the OCT has a deeper penetration 

depth than the PAI. On the other hand, the SNR of the OCT subsystem is measured to be 96 dB, 
while PAI is only 36 dB. The relatively low SNR decreases the contrast of deep blood vessels in 
PAI image, and thus deteriorates the penetration depth. We can see that some small deep 
vessels in Fig. 4(d) have low contrast and are difficult to distinguish, while the blood vessels in 
Fig. 4(c) are clear and have high contrast. Increasing the power of the excitation laser or 
optimizing the detection sensitivity can improve the penetration depth of PAI [47]. 

Because shutters are used to avoid incident light superimposing between OCT and PAI, 
their safety limits of American National Standards Institute (ANSI) should be considered 
separately. For PAI, the imaging area is 1.3 × 1.3 mm2,and the power of the detection beam is 3 
mW, so its average surface power is 0.18 W/cm2, which is much lower than the average power 
limit of 3 W/cm2 set by the ANSI. The transient fluence of the excitation laser is 16 mJ/cm2, 
which is lower than the single pulse limit set by ANSI of 20 mJ/cm2. For multi-excitation 
situations, the maximum permissible exposure (MPE) for each single pulse within the group 

shall not exceed the single-pulse MPE limit multiplied by a correction factor of 0.25n− , where 
n is the number of pulses [48]. With three laser pulse excitation at each point, the equivalent 
transient fluence limit is 15.2 mJ/cm2, which is close to that we used in this study. Therefore, 
the total incident power on the sample is slightly higher than ANSI limit in PAI subsystem. For 
OCT, its incident power is the same as that of the probing beam in PAI, which is lower than the 
ANSI limit. 

Non-contact optical detection of ultrasound in biological tissues is of great interest because 
it expands the scope of PAI to biomedical applications where contact is impractical [49]. 
Heterodyne interferometer based method uses an acousto-optic modulator (AOM) to 
frequency-modulate the reference beam. The interference signal is demodulated using an 
in-phase and quadrature demodulator. The two demodulated signals are captured for image 
reconstruction [50]. Heterodyne interferometer is relatively less sensitive to ambient noise 
compared with the homodyne one and does not need active stabilization [32]. However, the 
detection sensitivity defined as the peak value divided by the noise root-mean-squire value of 
the intensity fluctuations was only 13.7 dB [32]. In their results, the noise level of PA signal is 
high. Additional noise may be introduced during modulation and demodulation. Attempts have 
also been made to photoacoustic detection using a low-coherence interferometer [30,51,52]. 
However, the sensitivity of the low-coherence interferometer decreases with the increase of 
optical path length difference (OPLD). To address this problem, Lu et al. present a PAI system 
using a homodyne interferometer with a long coherence length laser that allows for a constant 
high sensitivity in a large dynamic range of the OPLD [31]. The system locks at the maximum 
sensitivity during data acquisition. However, this reduces the imaging speed. In this paper, we 
improved the imaging speed of our previous system and integrated it with OCTA to achieve 
dual-modal imaging. Recently, a new technique named deep photoacoustic remote sensing 
(dPARS) has been proposed. Instead of measuring the sample surface displacement in 
heterodyne and homodyne methods, dPARS detects PA initial pressures by measuring the 
intensity reflectivity modulations of a low-coherence probe beam [53,54]. dPARS needs 
Z-scan to image structures at different depth. Besides this, it has many advantages, such as a 
higher SNR and deeper penetration depth. dPARS may offer new opportunities for clinical 
translation. 
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5. Conclusion 

In summary, we presented a dual-modal optical system integrating non-contact PAI and OCT. 
PA signals were acquired using a fiber-based homodyne interferometer. The PA excitation, PA 
probing and SDOCT probing beams were combined using two dichroic mirrors. Three beams 
shared the same X-Y galvanometer scanner to perform fast two-dimensional scanning. The PAI 
acquisition speed was improved by the application of sensitivity compensation and reference 
arm modulation. PAI and OCTA were performed on the mouse pinna with and without flowing 
blood. The results indicate that the proposed system is capable of revealing blood flow states in 
vessels and is useful for the study of diseases associated with blood supply. 
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